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Tree algorithms

* Tree algorithms are important

e Data mining, statistics, scientific computing, graphics, bioinformatics
etc.

* Application-specific optimizations and tree algorithms
have been developed over the years



Tree algorithms and Optimizations
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Tree algorithms and optimizations

1. Does the tree algorithm admit an existing
optimization?

2. Can an optimization be generalized to other tree
algorithms?

Treel OQgYV helps to answer these questions.
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Treelogy

Generalize Categorize

RN

Ontology

Tree
algorithm

Optimization

Categorize Get associated optimizations

ISPASS2017 5



Contributions

Ontology for tree traversal algorithms

Mapping of optimizations with structural properties of tree
algorithms

A suite of 9 tree traversal algorithms from multiple domains

Evaluation with multiple tree types and hardware platforms
(GPUs, shared- and distributed-memory systems)

https://bitbucket.org/plcl/treelogy




Background

* Why trees and how?
* Search space elimination and compact data representation
e Often traversed repeatedly

* Metric trees and n-fix trees are the most common
types



Examples — metric trees

e.g. K-dimensional (kd-), Vantage Point (vp-), quad-trees, octrees, ball-trees

2-dimensional space of points Binary kd-tree, 1 point /leaf cell
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Kd-tree for two-point correlation

Goal: for every point, find the number of points that are
located within a given distance R. Naive solution: O(N?)

Input points = {1, 2, ..., N} € RX Kd-tree

With kd-trees: O(NlogN) ‘

Does the distancetoany ~ —~ 77T
point within the cell <R ? ‘ .

Two-point correlation (PC) 2. Nearest Neighbor (NN)

K-Nearest Neighbor (K-NN) 4. Barnes-Hut (BH)
K-means clustering (KC) 6. Photon mapping (PM)
Fast multipole method (FMM)
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Examples — n-fix tree

* We refer to prefix and suffix trees as n-fix trees

* e.g. suffix tree (trie) for string ATACS

{$}
{C}
Suffix set: =  {AC}
{TAC}
{ATAC}
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Generalized suffix trees for longest
common substring

Goal: find the longest common substring of two strings: 1)
ATGA and 2) ATGTA (answer: ATG) Naive solution: O(N*M?)

ATGA#ATGTAS Generalized suffix tree

With suffix trees: O(N+M)
in time and space

Path to Treelogy kernels with n-fix trees:
WeifleN1 1.  Frequent item set mining (FIM)
2. Longest common substring (LCS)
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Treelogy Kernels
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The Ontology

e Top-down vs. Bottom-up

Type of tree

Iterative with tree mutation

Iterative with working-set mutation

Guided vs. Unguided
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1.Unguided traversall®!

Guided vs. Unguided

Fixed order for every traversal
(e.g. left child followed by right)

2.Guided traversal

Data dependent traversal order
Order depends on vertex-computation

[15] Goldfarb et.al.,SC’13 ISPASS2017
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Classification

Benchmark Domain Attributes Tree Type

Two-Point Astrophysics, Top-down (preorder), guided (vp), Kd, vp

Correlation Statistics unguided (kd)

Nearest Neighbor Data mining Top-down (preorder), guided Kd, vp

K-Nearest Neighbor | Data mining Top-down (preorder), guided Kd, Ball

Barnes-Hut Astrophysics Top-down (preorder), unguided, oct, Kd

tree mutation

Photon Mapping Computer Top-down (preorder), unguided, Kd
Graphics working-set mutation

Frequent item-set Data mining Bottom-up, unguided, tree Prefix

mining mutation, working-set mutation

K-Means Clustering | Data mining, Top-down (inorder), guided, Kd
Machine learning | tree mutation

Longest common Bioinformatics Top-down (postorder), unguided, Suffix

substring tree mutation

Fast Multipole Scientific Top-down (preorder) and bottom- Quad

Method computing up, unguided, tree mutation
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Algorithm -> Ontology

What we have seen so far...

Tree
I ] . ]
algorithm Ontology Optimization

Categorize Determine optimizations
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Optimizations

e Optimizations are effective only when certain properties hold

Optimization Structural properties

Profile driven scheduling Top-down

Tiling Top-down, bottom-up

Vectorization Unguided

Data representation

Communication overhead
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Evaluation Methodology

e Platforms:

e Shared-memory (SHM): processors - 2 10-core Xeon E5 2660 V3,
memory - 32 KB L1, 256KB L2, 25MB L3, 64GB RAM

* Distributed-memory (DM): 10 nodes with high-speed Ethernet
interconnect

* GPU: nVidia Tesla K20C.
host —2 AMD 6164 HE processors, 32GB RAM

* Metrics:
* Architecture-independent

* Average traversal length, Load imbalance
e Architecture-dependent
* L3 Miss Rate, CPI
* All measurements consider traversal times only

ISPASS2017
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Runtime (s)
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Scalability contd.

* Adding more cores results in better performance

DM plots show excellent scaling
 SHM and GPU plots similar

e KC and LCS are exceptions

* |terative tree mutation algorithms marked by heavy
synchronization at the end of an iteration

* LCS less available parallelism
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Summary (scalability)

* Most kernels scale well while taking advantage of
ontology-driven optimizations

* Point Correlation (PC) with vp-tree is better than
kd-tree

* Barnes-Hut (BH) is sensitive to tree type and input
distribution
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Algorithm <- Optimization

What we have seen so far...

Generalize Categorize

Tree ¢ »( Ontology f .  Optimization
algorithm

Categorize Map optimizations
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Case study

* Generalizing locally essential trees (LET)

* BH specific (distributed-memory)
* Partial replication of tree structure

No Replication M Replication
16
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* Partial replication of only the top-subtree.
* Improves load-imbalance and minimizes communication overhead
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Conclusions

* Treelogy
* Ontology
* Mapping of optimizations to structural properties
* Asuite of 9 tree traversal kernels spanning ontology

* Shared-memory, distributed-memory, and GPU
implementations

* Multiple tree types based on popularity and efficiency
* Evaluations showed that most kernels scale well

e Two-point correlation (PC) with vp-trees better than
standard tree used in literature
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Thank you
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