
Treelogy:	A	Benchmark	
Suite	for	Tree	Traversals

Nikhil	Hegde,	Jianqiao	Liu,	Kirshanthan	Sundararajah,	
and	Milind	Kulkarni

School	of	Electrical	and	Computer	Engineering
Purdue	University

1

Purdue	University
Programming	
Languages	Group

ISPASS2017

• Tree	algorithms	are	important
• Data	mining,	statistics,	scientific	computing,	graphics,	bioinformatics	
etc.

• Application-specific	optimizations	and	tree	algorithms	
have	been	developed	over	the	years	

2

Tree	algorithms

ISPASS2017

Tree	algorithms	and	Optimizations

3

Tree	algorithms Optimizations

Barnes-Hut
Fast	multipole	method
Vantage	point	trees

Accelerating	ray	tracing
K-means	clustering

Frequent	item	set	mining

Locality
Communication
Vectorization
Scheduling

Barnes,1986

Rokhlin,1985
Yianilos,1993

Foley,2005
Alsabti,1997

Han,2000

Zhang,1997

Gray,2001

Warren,1992Hamada,2009

Makino,1990

Liu,2016

Ghoting,2007

Höhl,2002

ISPASS2017

Tree	algorithms	and	optimizations

1. Does	the	tree	algorithm	admit	an	existing	
optimization?

2. Can	an	optimization	be	generalized	to	other	tree	
algorithms?

4

Treelogy helps	to	answer	these	questions.

ISPASS2017

Treelogy

5

Tree	
algorithm Ontology Optimization

Generalize Categorize

Get	associated	optimizationsCategorize

ISPASS2017

Contributions

6

• Ontology for	tree	traversal	algorithms

• Mapping of	optimizations	with	structural	properties	of	tree	
algorithms

• A	suite	of	9	tree	traversal	algorithms	from	multiple	domains

• Evaluation	with	multiple	tree	types	and	hardware	platforms	
(GPUs,	shared- and	distributed-memory systems)

• https://bitbucket.org/plcl/treelogy

ISPASS2017

Background

• Why	trees	and	how?
• Search	space	elimination	and	compact	data	representation
• Often	traversed	repeatedly

• Metric	trees	and	n-fix	trees	are	the	most	common	
types

7ISPASS2017

Examples	– metric	trees

A

B

C

D

E
F

G

2-dimensional	space	of	points

G

FEA C

B D

Binary	kd-tree,	1	point	/leaf	cell

e.g.	K-dimensional	(kd-),	Vantage	Point	(vp-),	quad-trees,	octrees,	ball-trees

X

Y

8ISPASS2017

G

9

Kd-tree	for	two-point	correlation
Goal: for	every	point,	find	the	number	of	points	that	are	
located	within	a	given	distance	R. Naïve	solution:	O(N2)

With	kd-trees:	O(NlogN) N21

Does	the	distance	to	any	
point	within	the	cell	<	R	?

Input	points	=	{1,	2,	…	,	N}		Î ℝK Kd-tree

FEA C

B D

Treelogy kernels	with	metric	trees:
1.				Two-point	correlation	(PC)						2.					Nearest	Neighbor	(NN)	
3.				K-Nearest	Neighbor	(K-NN)					4.					Barnes-Hut	(BH)
5.				K-means	clustering	(KC)											6.					Photon	mapping	(PM)
7.				Fast	multipole	method	(FMM)

ISPASS2017

Examples	– n-fix	tree

• We	refer	to	prefix	and	suffix	trees	as	n-fix	trees

10

• e.g.	suffix	tree	(trie)	for	string	ATAC$

Suffix	set:
{C}
{AC}
{TAC}
{ATAC}

C A

C T

A

C

$

$

$

$

$

A

C

T
{$}

ISPASS2017

Generalized	suffix	trees	for	longest	
common	substring

11

Naïve	solution:		O(N*M2)
Goal: find	the	longest	common	substring	of	two	strings:	1)	
ATGA and 2)	ATGTA (answer: ATG)

ATGTA$

Path	to	a	node:		substring	of	string	1	or	string	2	or	both	(vertex	number)

*

**

* *

*
TG

TA G

GA#
$

A# TA$

#
$

TA$ A$

A# TA$

1 2

21 2

21

Generalized	suffix	tree

With	suffix	trees:		O(N+M)	
in	time	and	space

Longest	common	substring?	Deepest	vertex	with	*

GA#AT

Treelogy kernels	with	n-fix	trees:
1. Frequent	item	set	mining	(FIM)
2. Longest	common	substring	(LCS)

ISPASS2017

Treelogy Kernels
• Two-point	Correlation	(PC)

• Nearest	Neighbor	(NN)

• K-Nearest	Neighbor	(KNN)

• Barnes-Hut	(BH)

• Photon	Mapping	(PM)

• Frequent	Item-set	Mining	(FIM)

• K-Means	Clustering	(KC)

• Longest	Common	Substring	(LCS)

• Fast	Multipole	Method	(FMM)

• Traversals	dominate	computation
• Multiple	Traversals
• Independent
• Do	not	modify	the	tree	during	traversal

• Traversals	dominate	computation
• Multiple	Traversals
• Independent
• Do	not	modify	the	tree	during	traversal

• Two-point	Correlation	(PC)

• Longest	Common	Substring	(LCS)

Top-down	traversals,	different	tree	type

• Two-point	Correlation	(PC)

• Nearest	Neighbor	(NN)

• K-Nearest	Neighbor	(KNN)

• Barnes-Hut	(BH)

• Photon	Mapping	(PM)

• Frequent	Item-set	Mining	(FIM)

• K-Means	Clustering	(KC)

• Longest	Common	Substring	(LCS)

• Fast	Multipole	Method	(FMM)

• Top-down	traversal,	different	tree	type

• Barnes-Hut	(BH)

• Fast	Multipole	Method	(FMM)

Bottom-up	traversal,	same	tree	type

• Top-down	traversal,	different	tree	type
• Bottom-up	traversal,	same	tree	type

• Photon	Mapping	(PM)

• K-Means	Clustering	(KC)

• Barnes-Hut	(BH)

• Frequent	Item-set	Mining	(FIM)

Iterative,	modify	tree	and	(or)	traversals

• Top-down	traversal,	different	tree	type
• Bottom-up	traversal,	same	tree	type
• Iterative,	modify	tree	or	(and)	traversals

• Traversals	dominate	computation
• Multiple	Traversals
• Independent
• Do	not	modify	the	tree	during	traversal

12ISPASS2017

The	Ontology

• Top-down	vs.	Bottom-up

• Type	of	tree
• Iterative	with	tree	mutation

• Iterative	with	working-set	mutation

• Guided	vs.	Unguided

13ISPASS2017

Guided	vs.	Unguided

14

G

1.Unguided	traversal[15]

• Fixed	order	for	every	traversal	
(e.g.	left	child	followed	by	right)

2.Guided	traversal
• Data	dependent	traversal	order
• Order	depends	on	vertex-computation

[15]	Goldfarb	et.al.,SC’13 ISPASS2017

Classification

15

Benchmark Domain Attributes Tree	Type

Two-Point	
Correlation

Astrophysics,	
Statistics

Top-down	(preorder),	guided (vp),	
unguided (kd)

Kd,	vp

Nearest	Neighbor Data	mining Top-down	(preorder),	guided Kd,	vp
K-Nearest	Neighbor Data	mining Top-down	(preorder), guided Kd,	Ball
Barnes-Hut Astrophysics Top-down (preorder),	unguided,	

tree	mutation
oct,	Kd

Photon	Mapping Computer	
Graphics

Top-down (preorder),	unguided,	
working-set	mutation

Kd

Frequent	item-set	
mining

Data	mining Bottom-up, unguided,	tree	
mutation,	working-set	mutation

Prefix

K-Means	Clustering Data	mining,	
Machine	learning

Top-down (inorder),	guided,	
tree	mutation

Kd

Longest common	
substring

Bioinformatics Top-down	(postorder),	unguided,	
tree	mutation

Suffix

Fast Multipole	
Method

Scientific	
computing

Top-down	(preorder)	and	bottom-
up, unguided,	tree	mutation

Quad

ISPASS2017

Algorithm	->	Ontology

16

Tree	
algorithm Ontology Optimization

Determine	optimizationsCategorize

What	we	have	seen	so	far…

ISPASS2017

Tiling																																																											Top-down,			bottom-up

Profile	driven	scheduling																									Top-down

Optimization																													Structural	properties	

Vectorization																																													Unguided

Data	representation																																	Vp trees	for	NN,		prefix	trees	for	FIM,																								
suffix	trees	for	LCS.

Optimizations

17

• Optimizations	are	effective	only	when	certain	properties	hold

Communication	overhead																						Top-down

ISPASS2017

Evaluation	Methodology
• Platforms:

• Shared-memory	(SHM): processors	- 2	10-core	Xeon	E5	2660	V3,	
memory	- 32	KB	L1,	256KB	L2,	25MB	L3,	64GB	RAM

• Distributed-memory	(DM): 10	nodes	with	high-speed	Ethernet	
interconnect

• GPU: nVidia Tesla	K20C.
host	– 2	AMD	6164	HE	processors,	32GB	RAM

• Metrics:
• Architecture-independent	

• Average	traversal	length,	Load	imbalance
• Architecture-dependent

• L3	Miss	Rate,	CPI

• All	measurements	consider	traversal	times	only
18ISPASS2017

Scalability

19
Number	of	processes

Ru
nt
im

e	
(s
)

ISPASS2017

Scalability	contd.

• Adding	more	cores	results	in	better	performance
• DM	plots	show	excellent	scaling
• SHM	and	GPU	plots	similar

• KC	and	LCS	are	exceptions
• Iterative	tree	mutation	algorithms	marked	by	heavy	
synchronization	at	the	end	of	an	iteration
• LCS	less	available	parallelism

20ISPASS2017

Summary	(scalability)

• Most	kernels	scale	well	while	taking	advantage	of	
ontology-driven	optimizations
• Point	Correlation	(PC)	with	vp-tree	is	better	than	
kd-tree
• Barnes-Hut	(BH)	is	sensitive	to	tree	type	and	input	
distribution

21ISPASS2017

Algorithm	<- Optimization

22

Generalize Categorize

Tree	
algorithm

Ontology Optimization

Map	optimizationsCategorize

What	we	have	seen	so	far…

ISPASS2017

Case	study
• Generalizing	locally	essential	trees	(LET)

• BH	specific	(distributed-memory)
• Partial	replication	of	tree	structure

• Partial	replication	of	only	the	top-subtree.
• Improves	load-imbalance	and	minimizes	communication	overhead

23ISPASS2017

Conclusions

• Treelogy
• Ontology
• Mapping	of	optimizations	to	structural	properties
• A	suite	of	9	tree	traversal	kernels	spanning	ontology
• Shared-memory,		distributed-memory,	and	GPU	
implementations
• Multiple	tree	types	based	on	popularity	and	efficiency

• Evaluations	showed	that	most	kernels	scale	well
• Two-point	correlation	(PC)	with	vp-trees	better	than	
standard	tree	used	in	literature

24ISPASS2017

Thank	you

25ISPASS2017

