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• Tree	algorithms	are	important
• Data	mining,	statistics,	scientific	computing,	graphics,	bioinformatics	
etc.

• Application-specific	optimizations	and	tree	algorithms	
have	been	developed	over	the	years	
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Tree	algorithms
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Tree	algorithms	and	Optimizations
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Tree	algorithms Optimizations

Barnes-Hut
Fast	multipole	method
Vantage	point	trees

Accelerating	ray	tracing
K-means	clustering

Frequent	item	set	mining
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Communication
Vectorization
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Tree	algorithms	and	optimizations

1. Does	the	tree	algorithm	admit	an	existing	
optimization?

2. Can	an	optimization	be	generalized	to	other	tree	
algorithms?
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Treelogy helps	to	answer	these	questions.
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Treelogy
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Tree	
algorithm Ontology Optimization

Generalize Categorize

Get	associated	optimizationsCategorize
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Contributions
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• Ontology for	tree	traversal	algorithms

• Mapping of	optimizations	with	structural	properties	of	tree	
algorithms

• A	suite	of	9	tree	traversal	algorithms	from	multiple	domains

• Evaluation	with	multiple	tree	types	and	hardware	platforms	
(GPUs,	shared- and	distributed-memory systems)

• https://bitbucket.org/plcl/treelogy
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Background

• Why	trees	and	how?
• Search	space	elimination	and	compact	data	representation
• Often	traversed	repeatedly

• Metric	trees	and	n-fix	trees	are	the	most	common	
types
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Examples	– metric	trees
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2-dimensional	space	of	points
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Binary	kd-tree,	1	point	/leaf	cell

e.g.	K-dimensional	(kd-),	Vantage	Point	(vp-),	quad-trees,	octrees,	ball-trees

X

Y
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G
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Kd-tree	for	two-point	correlation
Goal: for	every	point,	find	the	number	of	points	that	are	
located	within	a	given	distance	R. Naïve	solution:	O(N2)

With	kd-trees:	O(NlogN) N21

Does	the	distance	to	any	
point	within	the	cell	<	R	?

Input	points	=	{1,	2,	…	,	N}		Î ℝK Kd-tree

FEA C

B D

Treelogy kernels	with	metric	trees:
1.				Two-point	correlation	(PC)						2.					Nearest	Neighbor	(NN)	
3.				K-Nearest	Neighbor	(K-NN)					4.					Barnes-Hut	(BH)
5.				K-means	clustering	(KC)											6.					Photon	mapping	(PM)
7.				Fast	multipole	method	(FMM)
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Examples	– n-fix	tree

• We	refer	to	prefix	and	suffix	trees	as	n-fix	trees
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• e.g.	suffix	tree	(trie)	for	string	ATAC$

Suffix	set:
{C}
{AC}
{TAC}
{ATAC}

C A

C T

A

C

$

$

$

$

$

A

C

T
{$}
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Generalized	suffix	trees	for	longest	
common	substring
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Naïve	solution:		O(N*M2)
Goal: find	the	longest	common	substring	of	two	strings:	1)	
ATGA and 2)	ATGTA (answer: ATG)

ATGTA$

Path	to	a	node:		substring	of	string	1	or	string	2	or	both	(vertex	number)

*

**

* *

*
TG

TA G

GA#
$

A# TA$

#
$

TA$ A$

A# TA$

1 2

21 2

21

Generalized	suffix	tree

With	suffix	trees:		O(N+M)	
in	time	and	space

Longest	common	substring?	Deepest	vertex	with	*

GA#AT

Treelogy kernels	with	n-fix	trees:
1. Frequent	item	set	mining	(FIM)
2. Longest	common	substring	(LCS)
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Treelogy Kernels
• Two-point	Correlation	(PC)

• Nearest	Neighbor	(NN)

• K-Nearest	Neighbor	(KNN)

• Barnes-Hut	(BH)

• Photon	Mapping	(PM)

• Frequent	Item-set	Mining	(FIM)

• K-Means	Clustering	(KC)

• Longest	Common	Substring	(LCS)

• Fast	Multipole	Method	(FMM)

• Traversals	dominate	computation
• Multiple	Traversals
• Independent
• Do	not	modify	the	tree	during	traversal

• Traversals	dominate	computation
• Multiple	Traversals
• Independent
• Do	not	modify	the	tree	during	traversal

• Two-point	Correlation	(PC)

• Longest	Common	Substring	(LCS)

Top-down	traversals,	different	tree	type

• Two-point	Correlation	(PC)

• Nearest	Neighbor	(NN)

• K-Nearest	Neighbor	(KNN)

• Barnes-Hut	(BH)

• Photon	Mapping	(PM)

• Frequent	Item-set	Mining	(FIM)

• K-Means	Clustering	(KC)

• Longest	Common	Substring	(LCS)

• Fast	Multipole	Method	(FMM)

• Top-down	traversal,	different	tree	type

• Barnes-Hut	(BH)

• Fast	Multipole	Method	(FMM)

Bottom-up	traversal,	same	tree	type

• Top-down	traversal,	different	tree	type
• Bottom-up	traversal,	same	tree	type

• Photon	Mapping	(PM)

• K-Means	Clustering	(KC)

• Barnes-Hut	(BH)

• Frequent	Item-set	Mining	(FIM)

Iterative,	modify	tree	and	(or)	traversals

• Top-down	traversal,	different	tree	type
• Bottom-up	traversal,	same	tree	type
• Iterative,	modify	tree	or	(and)	traversals

• Traversals	dominate	computation
• Multiple	Traversals
• Independent
• Do	not	modify	the	tree	during	traversal
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The	Ontology

• Top-down	vs.	Bottom-up

• Type	of	tree
• Iterative	with	tree	mutation

• Iterative	with	working-set	mutation

• Guided	vs.	Unguided

13ISPASS2017



Guided	vs.	Unguided
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G

1.Unguided	traversal[15]

• Fixed	order	for	every	traversal	
(e.g.	left	child	followed	by	right)

2.Guided	traversal
• Data	dependent	traversal	order
• Order	depends	on	vertex-computation

[15]	Goldfarb	et.al.,SC’13 ISPASS2017



Classification
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Benchmark Domain Attributes Tree	Type

Two-Point	
Correlation

Astrophysics,	
Statistics

Top-down	(preorder),	guided (vp),	
unguided (kd)

Kd,	vp

Nearest	Neighbor Data	mining Top-down	(preorder),	guided Kd,	vp
K-Nearest	Neighbor Data	mining Top-down	(preorder), guided Kd,	Ball
Barnes-Hut Astrophysics Top-down (preorder),	unguided,	

tree	mutation
oct,	Kd

Photon	Mapping Computer	
Graphics

Top-down (preorder),	unguided,	
working-set	mutation

Kd

Frequent	item-set	
mining

Data	mining Bottom-up, unguided,	tree	
mutation,	working-set	mutation

Prefix

K-Means	Clustering Data	mining,	
Machine	learning

Top-down (inorder),	guided,	
tree	mutation

Kd

Longest common	
substring

Bioinformatics Top-down	(postorder),	unguided,	
tree	mutation

Suffix

Fast Multipole	
Method

Scientific	
computing

Top-down	(preorder)	and	bottom-
up, unguided,	tree	mutation

Quad
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Algorithm	->	Ontology
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Tree	
algorithm Ontology Optimization

Determine	optimizationsCategorize

What	we	have	seen	so	far…
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Tiling																																																											Top-down,			bottom-up

Profile	driven	scheduling																									Top-down

Optimization																													Structural	properties	

Vectorization																																													Unguided

Data	representation																																	Vp trees	for	NN,		prefix	trees	for	FIM,																								
suffix	trees	for	LCS.

Optimizations
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• Optimizations	are	effective	only	when	certain	properties	hold

Communication	overhead																						Top-down

ISPASS2017



Evaluation	Methodology
• Platforms:

• Shared-memory	(SHM): processors	- 2	10-core	Xeon	E5	2660	V3,	
memory	- 32	KB	L1,	256KB	L2,	25MB	L3,	64GB	RAM

• Distributed-memory	(DM): 10	nodes	with	high-speed	Ethernet	
interconnect

• GPU: nVidia Tesla	K20C.
host	– 2	AMD	6164	HE	processors,	32GB	RAM

• Metrics:
• Architecture-independent	

• Average	traversal	length,	Load	imbalance
• Architecture-dependent

• L3	Miss	Rate,	CPI

• All	measurements	consider	traversal	times	only
18ISPASS2017



Scalability
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Number	of	processes

Ru
nt
im

e	
(s
)

ISPASS2017



Scalability	contd.

• Adding	more	cores	results	in	better	performance
• DM	plots	show	excellent	scaling
• SHM	and	GPU	plots	similar

• KC	and	LCS	are	exceptions
• Iterative	tree	mutation	algorithms	marked	by	heavy	
synchronization	at	the	end	of	an	iteration
• LCS	less	available	parallelism
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Summary	(scalability)

• Most	kernels	scale	well	while	taking	advantage	of	
ontology-driven	optimizations
• Point	Correlation	(PC)	with	vp-tree	is	better	than	
kd-tree
• Barnes-Hut	(BH)	is	sensitive	to	tree	type	and	input	
distribution
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Algorithm	<- Optimization
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Generalize Categorize

Tree	
algorithm

Ontology Optimization

Map	optimizationsCategorize

What	we	have	seen	so	far…
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Case	study
• Generalizing	locally	essential	trees	(LET)

• BH	specific	(distributed-memory)
• Partial	replication	of	tree	structure

• Partial	replication	of	only	the	top-subtree.
• Improves	load-imbalance	and	minimizes	communication	overhead
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Conclusions

• Treelogy
• Ontology
• Mapping	of	optimizations	to	structural	properties
• A	suite	of	9	tree	traversal	kernels	spanning	ontology
• Shared-memory,		distributed-memory,	and	GPU	
implementations
• Multiple	tree	types	based	on	popularity	and	efficiency

• Evaluations	showed	that	most	kernels	scale	well
• Two-point	correlation	(PC)	with	vp-trees	better	than	
standard	tree	used	in	literature
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Thank	you
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