

Front-endProgram
Source

Middle1

Middle2

Back-end

Low-level
intermediate

Representation Assembly
Code

High-level
Intermediate
Representation

loop-level transformations(loops,array references
 are preserved)

Low-level

Representation
Intermediate

conventional optimizations

register allocation
instruction selection

(array references converted into
 low level operations, loops

converted to control flow)

Organization of a Modern Compiler

syntax analysis + type-checking + symbol table

DO I = 1, N
 DO J = 1,M

M

1
1 N

I

J

 S

0 1
1 0

I
J

= L
K

DO I = 1, N
 DO J = 1,M
 S

M

1
1 N

I

J

DO K = 1, M
 DO L = 1, N
 S

1
1

K

L

M

N

 DO J = 1, M
DO I = 2, N

 A[I,J] = A[I-1,J+1] + 1

I

J

DO I = 2, N

N
1

N
 DO J = 1, M

2

Assume that array has 1’s stored everywhere before loop begins.

 A[I,J] = A[I-1,J+1] + 1

After loop permutation:

Transformed loop will produce different values (A[3,1] for example)
=> permutation is illegal for this loop.

Question: How do we determine when loop permutation is legal?

0 1
1 0

I
J

= L
K

1
I

J

DO K = 1, N

 S

1
1

K

L

DO I = 1, N
 DO J = 1, I
 S

N
1

N

 DO L = I, N N

N

Question: How do we generate loop bounds for transformed loop nest?

Two problems:

where A is a m X n matrix of integers,
 b is an m vector of integers,
 x is an n vector of unknowns,

(i) Are there integer solutions?
(ii) Enumerate all integer solutions.

Given a system of linear inequalities A x < b

Most problems regarding correctness of transformations
and code generation can be reduced to these problems.

Equality: line (2D), plane (3D), hyperplane (> 3D)
Intuition about systems of linear inequalities:

x

y

3x+4y = 12

3x + 4y <= 12

Inequality: half-plane (2D), half-space(>2D)

Region described by inequality is convex
 (if two points are in region, all points in between them are in region)

Intuition about systems of linear inequalities:

x

y

3x+4y <= 12

Region described by inequalities is a convex polyhedron
 (if two points are in region, all points in between them are in region)

Conjunction of inequalties = intersection of half-spaces
=> some convex region

x >= -5

3x - 3y <= 9

y <= 4

flow
anti
output

data
Dependences:

control

Input dependence: S1 -> S2

Output dependence: S1 -> S2

Anti-dependence: S1 -> S2

Flow dependence: S1 -> S2

 (i) S1 executes before S2
 (ii) S1 and S2 both read from the same location

 (ii) S1 and S2 write to the same location
 (i) S1 executes before S2

 (ii) S1 reads from a location that is overwritten later by S2
 (i) S1 executes before S2

(ii) S1 writes into a location that is read by S2
 (i) S1 executes before S2 in program order

x := 2
y := x + 1
x := 3
y := 7

output
flow

anti
output

- Real programs: imprecise information => need for safe approximation

procedure f (X,i,j)
 begin
 X(i) = 10;
 X(j) = 5;
 end

Answer: If (i = j), there is a dependence; otherwise, not.

=> Unless we know from interprocedural analysis that the parameters i and j are always distinct,
 we must play it safe and insert the dependence.

Question: Is there an output dependence from the first assignment to the second?

Example:

Conservative Approximation:

‘When you are not sure whether a dependence exists, you must assume it does.’

Key notion: Aliasing : two program names may refer to the same location (like X(i) and X(j))
May-dependence vs must-dependence: More precise analysis may eliminate may-dependences

Loop level Analysis: granularity is a loop iteration

I

J
each (I,J) value of

loop indices corresponds
to one point in picture

DO I = 1, 100
 DO J = 1, 100
 S

 Execution of a statement for given loop index values

Iteration (I1,J1) is said to be dependent on iteration (I2,J2) if
a dynamic instance (I1,J1) of a statement in loop body
is dependent on a dynamic instance (I2,J2) of a statement

Dynamic instance of a statement:

Dependence between iterations:

in the loop body.

How do we compute dependences between iterations of a loop nest?

I

J

U1
U2L1 L2

For a given I, the J co-ordinate of a point
in the iteration space of the loop nest satisfies
 max(L1(I),L2(I)) <= J <= min(U1(I),U2(I))

Min’s and max’s in loop bounds mayseem weird, but actually they describe
general polyhedral iteration spaces!

Presentation sequence:

- one equation, several variables

- several equations, several variables
2 x + 3 y = 5

2x + 3 y + 5 z = 5
3x + 4 y = 3

2x + 3 y = 5
x <= 5
y <= -9

- equations & inequalities

Diophatine equations:
use integer Gaussian
elimination

Solve equalities first
then use Fourier-Motzkin
elimination

One equation, many variables:
 a1 x1 + a2 x2 ++ an xn = c

Examples:

GCD(2,1) = 1 which divides 3.
Solutions: x = t, y = (3 - 2t)

GCD(2,3) = 1 which divides 3.
Let z = x + floor(3/2) y = x + y
Rewrite equation as 2z + y = 3
Solutions: z = t x = (3t - 3)

y = (3 - 2t)y = (3 - 2t)
=>

Thm: The linear Diophatine equation
has integer solutions iff gcd(a1,a2,...,an) divides c.

 (1) 2x = 3 No solutions
 (2) 2x = 6 One solution: x = 3
 (3) 2x + y = 3

(4) 2x + 3y = 3

Intuition: Think of underdetermined systems of eqns over reals.
Caution: Integer constraint => Diophantine system may have no solns

Thm: The linear Diophatine equation a1 x1 + a2 x2 ++ an xn = c
has integer solutions iff gcd(a1,a2,...,an) divides c.

Proof: WLOG, assume that all coefficients a1,a2,...an are positive.
We prove only the IF case by induction, the proof in the other direction is trivial.
Induction is on min(smallest coefficient, number of variables).

Base case:

If (# of variables = 1) , then equation is a1 x1 = c which has integer solutions
if a1 divides c.

If (smallest coefficient = 1), then gcd(a1,a2,...,an) = 1 which divides c.
Wlog, assume that a1 = 1, and observe that the equation has solutions

 of the form (c - a2 t2 - a3 t3 -....-an tn, t2, t3, ...tn).
Inductive case:

Suppose smallest coefficient is a1, and let t = x1 + floor(a2/a1) x2 ++ floor(an/a1) xn
In terms of this variable, the equation can be rewritten as
 (a1) t + (a2 mod a1) x2 ++ (an mod a1) xn = c (1)

where we assume that all terms with zero coefficient have been deleted.
Observe that (1) has integer solutions iff original equation does too.
Now gcd(a,b) = gcd(a mod b, b) => gcd(a1,a2,...,an) = gcd(a1, (a2 mod a1),..,(an mod a1))

=> gcd(a1, (a2 mod a1),..,(an mod a1)) divides c.
If a1 is the smallest co-efficient in (1), we are left with 1 variable base case.
Otherwise, the size of the smallest co-efficient has decreased, so we have

made progress in the induction.

Eqn: a1 x1 + a2 x2 ++ an xn = c

Summary:

- Does this have integer solutions?

 = Does gcd(a1,a2,...,an) divide c ?

It is useful to consider solution process in matrix-theoretic terms.

(3 5 8)(x y z) = 6T

(2 0)(a b)
T

= 8

Solution is a = 4, b = t

looks lower triangular, right?

We can write single equation as

It is hard to read off solution from this, but for special matrices,
it is easy.

Key concept: column echelon form -
"lower triangular form for underdetermined systems"

For a matrix with a single row, column echelon form is
(x 0 0 0...0)

3x + 5y + 8z = 6

Substitution: t = x + y + 2z
New equation:

3t + 2y + 2z = 6

Substitution: u = y+z+t
New equation:

2u + t = 6

Solution:
u = p1
t = (6-2p1)

Backsubstitution:
y = p2
t = (6-2p1)
z = (3p1-p2-6)

Backsubstitution:
x = (18-8p1+p2)
y = p2
z = (3p1-p2-6)

= (3 2 2)

(3 5 8)

= (1 2 0)

= (1 0 0)

 (1 2 0) 1 -2 0
0 1 0
0 0 1

(3 2 2) 1 0 0
-1 1 -1
 0 0 1

(3 5 8) 1 -1 -2
0 1 0
0 0 1

Solution: (6 a b)

Product of matrices =
2 -5 -1
-1 3 -1
0 0 1

Solution to original system: 12-5a-b
 -6+3a-b
 b

U1

U2

U3

T U1*U2*U3

U1*U2*U3*(6 a b)T

Systems of Diophatine Equations:
Key idea: use integer Gaussian elimination

It is not easy to determine if this Diophatine system has solutions.

Easy special case: lower triangular matrix

Question: Can we convert general integer matrix into
equivalent lower triangular system?

INTEGER GAUSSIAN ELIMINATION

Example:

2x + 3y + 4z = 5
 x - y + 2z = 5

=>
2 3 4
1 -1 2

x
y
z

=
5
5

x
y
z

=
5
5-2 5 0

1 0 0 =>

z = arbitrary integer

x = 5
y = 3

Integer gaussian Elimination

Find matrices U1, U2,...Uk such that

A*U1*U2*...*Uk is lower triangular (say L)
Solve Lx’ = b (easy)
Compute x = (U1*U2*...*Uk)*x

 (A*U1*U2...*Uk)x’ = b
=> A(U1*U2*...*Uk)x’ = b
=> x = (U1*U2...*Uk)x’

Proof:

Overall strategy: Given Ax = b

- Use row/column operations to get matrix into triangular form
- For us, column operations are more important because we
 usually have more unknowns than equations

5
1

Caution: Not all column operations preserve integer solutions.

2 3
6 7

x
y

=

1 -3
0 2

5
1

2 0
6 -4 y’

x’ =

One solution: Use only unimodular column operations
Question: Can we stay purely in the integer domain?

Solution: x = -8, y = 7

which has no integer solutions!

Intuition: With some column operations, recovering solution
of original system requires solving lower triangular system
using rationals.

Unimodular Column Operations:

Check

3 2
7 60 1

1 0

2 3
6 7

Let x,y satisfy first eqn.
Let x’,y’ satisfy second eqn.

x’ = y , y’ = x

2 3
6 7

2 3
6 7

2 -3
6 -71 0

0 -1

6 1
2 1

1 -1
0 1

x’ = x, y’ = - y
Check

Check
n = -1

x = x’ + n y’
y = y’

(a) Interchange two columns

(b) Negate a column

(c) Add an integer multiple of one column to another

1 0 0
-2 5 0

x’ = 5
y’ = 3

1 -1 2
2 3 4

Example:

= 5
5

1 -1 2
2 3 4 2 3 0

1 -1 0
2 1 0
1 -2 0

0 1 0
5 -2 0

=> => => =>

1 0 -2
0 1 0
0 0 1 0 0 1

0 1 0
0 0 1

1 -1 0 1 0 0

0 0 1
-2 1 0 1 0 0

0 1 0

x’
y’

1 0 0 = 5
5

=>

z’ z’ = t

=> x
y
z

=
-1 3 -2
 1 -2 0
 0 0 1

5
3
t

= -1
t

4-2t

x
y
z

-2 5 0

Facts:

- interchanging two columns
1. The three unimodular column operations

- negating a column
- adding an integer multiple of one column to another

on the matrix A of the system A x = b
preserve integer solutions, as do sequences of these operations.

2. Unimodular column operations can be used to reduce
 a matrix A into lower triangular form.

has integer entries and a determinant3. A unimodular matrix
of +1 or -1.

4. The product of two unimodular matrices is also unimodular.

Algorithm: Given a system of Diophantine equations Ax = b

to lower triangular form L.
2. If Lx’ = b has integer solutions, so does the original system.
3. If explicit form of solutions is desired, let U be the product

1. Use unimodular column operations to reduce matrix A

 of unimodular matrices corresponding to the column operations.
x = U x’ where x’ is the solution of the system Lx’ = b

to compute ‘column echelon form’ of matrix.
Let rj be the row containing the first non-zero

(ii) column (j+1) is zero if column j is.

Column echelon form:

Detail: Instead of lower triangular matrix, you should

(i) r(j+1) > rj if column j is not entirely zero.
in column j.

x 0 0
x 0 0
x x x

is lower triangular but not column echelon.
Point: writing down the solution for this system requires additional
work with the last equation (1 equation, 2 variables). This work is
precisely what is required to produce the column echelon form.

Note: Even in regular Gaussian elimination, we want column echelon form rather than
lower triangular form when we have under-determined systems.

