
Modeling loop 
performance

Tuesday, February 2, 2010



Loop transformations
• Many kinds of loop transformations

• Loop permutation/interchange

• Loop blocking/tiling

• Loop reversal

• Loop fusion

• Want to understand the effects of these transformations

• How does a transformation impact performance?

• Can we predict this impact?

• Focus on a case study: matrix-matrix multiply and loop 
interchange

Tuesday, February 2, 2010



Matrix-matrix multiply
• Key kernel in linear algebra

• How much data? How much 
computation?

• Significant data reuse

• Important factor in performance: miss 
ratio

• Does miss ratio depend on 
problem size?

• Interesting fact: can execute loops 
in any order

• Does miss ratio depend on 
loop order?

• Can we predict miss ratio?

3

for i ∈ [0 : 1 : N − 1]

for j ∈ [0 : 1 : M − 1]

for k ∈ [0 : 1 : K − 1]

Cij = Cij + Aik * Bkj

Fig. 1. Naı̈ve MMM Code

Figure 1 shows the standard three nested-loop version of
matrix multiplication. As is well-known, this loop nest is fully
permutable because the loops can be executed in any order
without changing the result [3]. To refer to these versions, we
will specify the loop order from outermost in; for example,
the ijk version is the one with the i loop outermost and the
k loop innermost. Without loss of generality, we will assume
that the matrix is stored in row-major order.

0 1000 2000 3000 4000

N (elements)

0

10

20

30

40

50

60

L
2
 M

is
s
 R

a
te

k inner

i inner

j inner

Fig. 2. MMM L2 cache miss ratio on Itanium 2

Figure 2 shows the L2 cache miss ratio for these MMM
versions on an Itanium 2. The capacity of the L2 cache is
256KB, and its line size is 128 bytes. We focused on the
L2 cache because floating-point loads and stores bypass the
L1 cache on the Itanium architecture. All three matrices are
square, and the matrix elements are 8-byte doubles. PAPI
counters [19] were used to measure L2 data cache accesses
and misses2.

Careful examination of Figure 2 shows that for each loop
order, the range of matrix sizes can be divided into three zones
with characteristic behavior. For small matrix sizes, we see that
the miss ratio decreases as the matrix size increases, which is
counter-intuitive (Figure 3 zooms in on smaller matrix sizes,
making this behavior more clear). After reaching a minimum,
the miss rates begin to increase until they stabilize; for medium
matrix sizes, the miss ratio is roughly constant irrespective of
problem size. Then, as the matrix size increases further, the

2The numbers reported by PAPI are the L2 cache accesses and misses
from both application data accesses and from servicing of TLB misses. Some
experimentation revealed that the TLB implementation on the Itanium 2
architecture triggers an L2 access for every TLB miss. Therefore, we measured
the number of TLB misses and subtracted that number from the number of
L2 cache accesses reported by PAPI to obtain an estimate for the number of
L2 cache accesses from application data accesses. At larger problem sizes,
we believe that TLB misses generate not only L2 accesses, but L2 misses
as well. We have no way of estimating this number, so at larger sizes, the
miss rate is higher than we would expect if we were only looking at misses
resulting from data access

0 50 100 150 200 250 300 350

N (elements)

0

2

4

6

8

L
2
 M

is
s
 R

a
te

 (
%

)

k inner

i inner

j inner

Fig. 3. MMM L2 cache miss ratio on Itanium 2 for small problem sizes

miss ratio increases again until it finally levels off. However,
the point at which the miss rate begins to increase, as well as
the asymptotic miss ratio, depend on the loop order.

A. Miss ratio calculations
Although Figure 2 is very complex, analytical models can

be used to explain the more important features. If we assume
that matrix elements are not allocated to registers, every access
in the code to a matrix element becomes a memory access,
so the total number of memory accesses is 4N3 where N is
the dimension of the matrices. To simplify the computations,
we will assume that the cache is fully associative, so there
are no conflict misses. Thus, we need only consider cold and
capacity misses. We see that there are no write misses in this
code since every write to an element of matrix C is preceded
almost immediately by a read of the same element. Therefore,
we can focus on the reads.

For small enough matrices, there are no capacity misses, so
the only misses are cold misses. If we assume that the line
size is b doubles, each miss brings in b elements of the matrix,
so the number of cold misses is 3N2/b. Therefore, the miss
ratio is 3N2/4bN3 = 3/4bN . As N increases, the predicted
miss ratio decreases until we start to observe capacity misses,
which can be seen in Figure 3.

Once N becomes large enough, there are capacity misses.
For matrix multiply, there is a symmetry in the accesses made
to the different elements of a given matrix, so the behavior
is easy to analyze. When the problem size is small, the only
misses are cold misses, and the accesses to that matrix enjoy
both spatial and temporal locality, so the number of misses
is N2/b. As the problem size increases, the accesses to that
matrix may lose temporal locality, but may still enjoy spatial
locality. In that case, one in every b accesses is a miss, so
the number of misses is N3/b. Finally, when the problem size
increases even further, the accesses may have neither spatial
nor temporal locality, and every access is a miss, so the number
of misses is N3. Therefore, the number of misses for a given
matrix will be one of the three possibilities shown in Table I.

We now want to estimate the problem sizes at which the
matrices transition between these behaviors. This depends on
the loop order and the layout of matrices in memory. We will

A C

B

j

j

k

k

ii

Tuesday, February 2, 2010



Miss ratios

0 1000 2000 3000 4000

N (elements)

0

10

20

30

40

50

60

L
2
 M

is
s
 R

a
te

k inner

i inner

j inner

Tuesday, February 2, 2010



Miss ratios

0 50 100 150 200 250 300 350

N (elements)

0

2

4

6

8

L
2
 M

is
s
 R

a
te

 (
%

)

k inner

i inner

j inner

Tuesday, February 2, 2010



Explaining miss ratios

• When matrices are small, everything fits in cache

• Only get cold misses, no capacity misses

• Misses: 3N2/b, accesses: 4N3 (why?)

• Miss rate: 3/(4bN)

• Miss rate goes down as problem size goes up!

• How long does this happen?

• Naive guess: happens as long as all three matrices fit in 
cache (N ≤ sqrt(C/3))

• On Itanium: should happen when N ≤ 104

Tuesday, February 2, 2010



Miss-rate regimes
• When a matrix fits entirely in cache, it experiences temporal and 

spatial locality

• Misses: N2/b

• If a matrix is being walked in row-major order, it may experience 
spatial locality, but not temporal locality

• Only get a miss 1 out of b accesses

• Misses: N3/b

• Other times, a matrix experiences no locality

• Every access misses

• Misses: N3

• (What about a matrix that only experiences temporal locality?)

Tuesday, February 2, 2010



Predicting miss rates

• To predict a miss rate, we need to determine, for each 
matrix:

• Whether it experiences no locality, spatial locality, or 
both spatial and temporal locality

• At which point the matrix transitions between the 
various regimes

Tuesday, February 2, 2010



Stack distance

• Introduced by Mattson et al. in 1970

• The stack distance of a memory location is the number of 
distinct cache lines touched between successive accesses to 
that location

• Called stack distance because it can be calculated with a 
reuse stack

• Also called reuse distance

Tuesday, February 2, 2010



Stack distance

• We introduce two types of stack distance:

• dt(M): the stack distance between successive accesses to 
a given element of M

• ds(M): the minimum stack distance between successive 
accesses to distinct elements of M that lay on the same 
cache line

• If C < b* dt(M), matrix does not have temporal locality

• By the time we touch the same element again, we’ve 
brought in too many other elements into cache

• If C < b*ds(M), matrix does not have spatial locality

Tuesday, February 2, 2010



Computing dt and ds

• A is walked in row major order in 
inner loop

• ds(A) = 3 (why?)

• Note: ds is not dependent on N → 
A always has spatial locality

• How many iterations does it take to 
return to the same element of A?

• What is dt(A)?

3

for i ∈ [0 : 1 : N − 1]

for j ∈ [0 : 1 : M − 1]

for k ∈ [0 : 1 : K − 1]

Cij = Cij + Aik * Bkj

Fig. 1. Naı̈ve MMM Code

Figure 1 shows the standard three nested-loop version of
matrix multiplication. As is well-known, this loop nest is fully
permutable because the loops can be executed in any order
without changing the result [3]. To refer to these versions, we
will specify the loop order from outermost in; for example,
the ijk version is the one with the i loop outermost and the
k loop innermost. Without loss of generality, we will assume
that the matrix is stored in row-major order.

0 1000 2000 3000 4000

N (elements)

0

10

20

30

40

50

60

L
2
 M

is
s
 R

a
te

k inner

i inner

j inner

Fig. 2. MMM L2 cache miss ratio on Itanium 2

Figure 2 shows the L2 cache miss ratio for these MMM
versions on an Itanium 2. The capacity of the L2 cache is
256KB, and its line size is 128 bytes. We focused on the
L2 cache because floating-point loads and stores bypass the
L1 cache on the Itanium architecture. All three matrices are
square, and the matrix elements are 8-byte doubles. PAPI
counters [19] were used to measure L2 data cache accesses
and misses2.

Careful examination of Figure 2 shows that for each loop
order, the range of matrix sizes can be divided into three zones
with characteristic behavior. For small matrix sizes, we see that
the miss ratio decreases as the matrix size increases, which is
counter-intuitive (Figure 3 zooms in on smaller matrix sizes,
making this behavior more clear). After reaching a minimum,
the miss rates begin to increase until they stabilize; for medium
matrix sizes, the miss ratio is roughly constant irrespective of
problem size. Then, as the matrix size increases further, the

2The numbers reported by PAPI are the L2 cache accesses and misses
from both application data accesses and from servicing of TLB misses. Some
experimentation revealed that the TLB implementation on the Itanium 2
architecture triggers an L2 access for every TLB miss. Therefore, we measured
the number of TLB misses and subtracted that number from the number of
L2 cache accesses reported by PAPI to obtain an estimate for the number of
L2 cache accesses from application data accesses. At larger problem sizes,
we believe that TLB misses generate not only L2 accesses, but L2 misses
as well. We have no way of estimating this number, so at larger sizes, the
miss rate is higher than we would expect if we were only looking at misses
resulting from data access

0 50 100 150 200 250 300 350

N (elements)

0

2

4

6

8

L
2
 M

is
s
 R

a
te

 (
%

)

k inner

i inner

j inner

Fig. 3. MMM L2 cache miss ratio on Itanium 2 for small problem sizes

miss ratio increases again until it finally levels off. However,
the point at which the miss rate begins to increase, as well as
the asymptotic miss ratio, depend on the loop order.

A. Miss ratio calculations
Although Figure 2 is very complex, analytical models can

be used to explain the more important features. If we assume
that matrix elements are not allocated to registers, every access
in the code to a matrix element becomes a memory access,
so the total number of memory accesses is 4N3 where N is
the dimension of the matrices. To simplify the computations,
we will assume that the cache is fully associative, so there
are no conflict misses. Thus, we need only consider cold and
capacity misses. We see that there are no write misses in this
code since every write to an element of matrix C is preceded
almost immediately by a read of the same element. Therefore,
we can focus on the reads.

For small enough matrices, there are no capacity misses, so
the only misses are cold misses. If we assume that the line
size is b doubles, each miss brings in b elements of the matrix,
so the number of cold misses is 3N2/b. Therefore, the miss
ratio is 3N2/4bN3 = 3/4bN . As N increases, the predicted
miss ratio decreases until we start to observe capacity misses,
which can be seen in Figure 3.

Once N becomes large enough, there are capacity misses.
For matrix multiply, there is a symmetry in the accesses made
to the different elements of a given matrix, so the behavior
is easy to analyze. When the problem size is small, the only
misses are cold misses, and the accesses to that matrix enjoy
both spatial and temporal locality, so the number of misses
is N2/b. As the problem size increases, the accesses to that
matrix may lose temporal locality, but may still enjoy spatial
locality. In that case, one in every b accesses is a miss, so
the number of misses is N3/b. Finally, when the problem size
increases even further, the accesses may have neither spatial
nor temporal locality, and every access is a miss, so the number
of misses is N3. Therefore, the number of misses for a given
matrix will be one of the three possibilities shown in Table I.

We now want to estimate the problem sizes at which the
matrices transition between these behaviors. This depends on
the loop order and the layout of matrices in memory. We will

A C

B

j

j

k

k

ii

Tuesday, February 2, 2010



Miss rates for B and C

• What is dt(B)?

• What is ds(B)?

• What about for C?

3

for i ∈ [0 : 1 : N − 1]

for j ∈ [0 : 1 : M − 1]

for k ∈ [0 : 1 : K − 1]

Cij = Cij + Aik * Bkj

Fig. 1. Naı̈ve MMM Code

Figure 1 shows the standard three nested-loop version of
matrix multiplication. As is well-known, this loop nest is fully
permutable because the loops can be executed in any order
without changing the result [3]. To refer to these versions, we
will specify the loop order from outermost in; for example,
the ijk version is the one with the i loop outermost and the
k loop innermost. Without loss of generality, we will assume
that the matrix is stored in row-major order.

0 1000 2000 3000 4000

N (elements)

0

10

20

30

40

50

60

L
2
 M

is
s
 R

a
te

k inner

i inner

j inner

Fig. 2. MMM L2 cache miss ratio on Itanium 2

Figure 2 shows the L2 cache miss ratio for these MMM
versions on an Itanium 2. The capacity of the L2 cache is
256KB, and its line size is 128 bytes. We focused on the
L2 cache because floating-point loads and stores bypass the
L1 cache on the Itanium architecture. All three matrices are
square, and the matrix elements are 8-byte doubles. PAPI
counters [19] were used to measure L2 data cache accesses
and misses2.

Careful examination of Figure 2 shows that for each loop
order, the range of matrix sizes can be divided into three zones
with characteristic behavior. For small matrix sizes, we see that
the miss ratio decreases as the matrix size increases, which is
counter-intuitive (Figure 3 zooms in on smaller matrix sizes,
making this behavior more clear). After reaching a minimum,
the miss rates begin to increase until they stabilize; for medium
matrix sizes, the miss ratio is roughly constant irrespective of
problem size. Then, as the matrix size increases further, the

2The numbers reported by PAPI are the L2 cache accesses and misses
from both application data accesses and from servicing of TLB misses. Some
experimentation revealed that the TLB implementation on the Itanium 2
architecture triggers an L2 access for every TLB miss. Therefore, we measured
the number of TLB misses and subtracted that number from the number of
L2 cache accesses reported by PAPI to obtain an estimate for the number of
L2 cache accesses from application data accesses. At larger problem sizes,
we believe that TLB misses generate not only L2 accesses, but L2 misses
as well. We have no way of estimating this number, so at larger sizes, the
miss rate is higher than we would expect if we were only looking at misses
resulting from data access

0 50 100 150 200 250 300 350

N (elements)

0

2

4

6

8

L
2
 M

is
s
 R

a
te

 (
%

)

k inner

i inner

j inner

Fig. 3. MMM L2 cache miss ratio on Itanium 2 for small problem sizes

miss ratio increases again until it finally levels off. However,
the point at which the miss rate begins to increase, as well as
the asymptotic miss ratio, depend on the loop order.

A. Miss ratio calculations
Although Figure 2 is very complex, analytical models can

be used to explain the more important features. If we assume
that matrix elements are not allocated to registers, every access
in the code to a matrix element becomes a memory access,
so the total number of memory accesses is 4N3 where N is
the dimension of the matrices. To simplify the computations,
we will assume that the cache is fully associative, so there
are no conflict misses. Thus, we need only consider cold and
capacity misses. We see that there are no write misses in this
code since every write to an element of matrix C is preceded
almost immediately by a read of the same element. Therefore,
we can focus on the reads.

For small enough matrices, there are no capacity misses, so
the only misses are cold misses. If we assume that the line
size is b doubles, each miss brings in b elements of the matrix,
so the number of cold misses is 3N2/b. Therefore, the miss
ratio is 3N2/4bN3 = 3/4bN . As N increases, the predicted
miss ratio decreases until we start to observe capacity misses,
which can be seen in Figure 3.

Once N becomes large enough, there are capacity misses.
For matrix multiply, there is a symmetry in the accesses made
to the different elements of a given matrix, so the behavior
is easy to analyze. When the problem size is small, the only
misses are cold misses, and the accesses to that matrix enjoy
both spatial and temporal locality, so the number of misses
is N2/b. As the problem size increases, the accesses to that
matrix may lose temporal locality, but may still enjoy spatial
locality. In that case, one in every b accesses is a miss, so
the number of misses is N3/b. Finally, when the problem size
increases even further, the accesses may have neither spatial
nor temporal locality, and every access is a miss, so the number
of misses is N3. Therefore, the number of misses for a given
matrix will be one of the three possibilities shown in Table I.

We now want to estimate the problem sizes at which the
matrices transition between these behaviors. This depends on
the loop order and the layout of matrices in memory. We will

A C

B

j

j

k

k

ii

Tuesday, February 2, 2010



Putting it all together

missijk,A(N, b, C) =
{

N2/b bN + N ≤ C
N3/b otherwise

missijk,B(N, b, C) =






N2/b (N2 + 2N) ≤ C
N3/b bN + N ≤ C
N3 otherwise

missijk,C(N, b, C) = N2/b

Tuesday, February 2, 2010



Putting it all together

ratioijk(N, b, C) =






3/(4bN) N ≤
√

(C)
1/(4b) N ≤ C/(b + 1)
(b + 1)/(4b) otherwise

missijk(N, b, C) =






3N2/b (N2 + 2N) ≤ C
N3/b + 2N2/b bN + N ≤ C
(b + 1)N3/b otherwise

Tuesday, February 2, 2010



Miss ratios for other orders

ratioijk(N, b, C) =






3/(4bN) N ≤
√

(C)
1/(4b) N ≤ C/(b + 1)
(b + 1)/(4b) otherwise

ratiojki(N, b, C) =






3/(4bN) N ≤
√

(C)
1/(4b) N ≤ C/(2b)
1/2 otherwise

ratiokij(N, b, C) =






3/(4bN) N ≤
√

(C)
1/(4b) N ≤ C/2
1/(2b) otherwise

Tuesday, February 2, 2010



Performance regimes
• Large-cache regime

• All matrices exhibit temporal and spatial locality

• Miss rate decreases as matrix size gets larger

• For all orders, occurs until N ≥ sqrt(C)

• Medium-cache regime

• One matrix starts incurring capacity misses

• Others still enjoy locality

• Small-cache regime

• Two matrices start suffering capacity misses

Tuesday, February 2, 2010



Predicting performance
• Itanium 2 architecture:

• Line size: 16 doubles

• Cache size (L2): 32K doubles

• Predicted miss rates:

• decrease while N ≤ 181

• 1.5625% while N ≤ 1927

• 26.5625% afterwards

ratioijk(N, b, C) =






3/(4bN) N ≤
√

(C)
1/(4b) N ≤ C/(b + 1)
(b + 1)/(4b) otherwise

Tuesday, February 2, 2010



Miss ratios

0 50 100 150 200 250 300 350

N (elements)

0

2

4

6

8

L
2
 M

is
s
 R

a
te

 (
%

)

k inner

i inner

j inner

Tuesday, February 2, 2010



Miss ratios

0 1000 2000 3000 4000

N (elements)

0

10

20

30

40

50

60

L
2
 M

is
s
 R

a
te

k inner

i inner

j inner

Tuesday, February 2, 2010



Loop permutation
• Loop permutation clearly an important transformation

• Can lead to massive performance improvements

• How do we determine when loop permutation is legal?

• How do we automatically generate permuted code?

• Straightforward for some loops (like MMM)

• Much harder for other loops

• How do we know if loop permutation will be useful?

• Don’t want to change ikj loop into jki loop!

• Are there other transformations we might want to perform?

• The next set of lectures will answer these questions

Tuesday, February 2, 2010


