Modeling loop performance

Loop transformations

- Many kinds of loop transformations
- Loop permutation/interchange
- Loop blocking/tiling
- Loop reversal
- Loop fusion
- Want to understand the effects of these transformations
- How does a transformation impact performance?
- Can we predict this impact?
- Focus on a case study: matrix-matrix multiply and loop interchange

Matrix-matrix multiply

- Key kernel in linear algebra
- How much data? How much computation?
- Significant data reuse
- Important factor in performance: miss ratio
- Does miss ratio depend on problem size?
- Interesting fact: can execute loops in any order

$$
\begin{aligned}
& \text { for } i \in[0: 1: N-1] \\
& \text { for } j \in[0: 1: M-1] \\
& \quad \text { for } k \in[0: 1: K-1] \\
& \qquad \mathrm{C}_{i j}=\mathrm{C}_{i j}+\mathrm{A}_{i k} * \mathrm{~B}_{k j}
\end{aligned}
$$

- Does miss ratio depend on loop order?
- Can we predict miss ratio?

Miss ratios

Tuesday, February 2, 2010

Miss ratios

Explaining miss ratios

- When matrices are small, everything fits in cache
- Only get cold misses, no capacity misses
- Misses: $3 \mathrm{~N}^{2} / \mathrm{b}$, accesses: $4 \mathrm{~N}^{3}$ (why?)
- Miss rate: $3 /(4 \mathrm{bN})$
- Miss rate goes down as problem size goes up!
- How long does this happen?
- Naive guess: happens as long as all three matrices fit in cache ($\mathrm{N} \leq \operatorname{sqrt}(\mathrm{C} / 3)$)
- On Itanium: should happen when $\mathrm{N} \leq 104$

Miss-rate regimes

- When a matrix fits entirely in cache, it experiences temporal and spatial locality
- Misses: $\mathrm{N}^{2 / b}$
- If a matrix is being walked in row-major order, it may experience spatial locality, but not temporal locality
- Only get a miss I out of baccesses
- Misses: $\mathrm{N}^{3} / \mathrm{b}$
- Other times, a matrix experiences no locality
- Every access misses
- Misses: N^{3}
- (What about a matrix that only experiences temporal locality?)

Predicting miss rates

- To predict a miss rate, we need to determine, for each matrix:
- Whether it experiences no locality, spatial locality, or both spatial and temporal locality
- At which point the matrix transitions between the various regimes

Stack distance

- Introduced by Mattson et al. in 1970
- The stack distance of a memory location is the number of distinct cache lines touched between successive accesses to that location
- Called stack distance because it can be calculated with a reuse stack
- Also called reuse distance

Stack distance

- We introduce two types of stack distance:
- $d_{t}(M)$: the stack distance between successive accesses to a given element of M
- $d_{s}(M)$: the minimum stack distance between successive accesses to distinct elements of M that lay on the same cache line
- If $C<b^{*} d_{t}(M)$, matrix does not have temporal locality
- By the time we touch the same element again, we've brought in too many other elements into cache
- If $C<b^{*} d_{s}(M)$, matrix does not have spatial locality

Computing d_{t} and d_{s}

- A is walked in row major order in inner loop
- $d_{s}(A)=3$ (why?)
- Note: d_{s} is not dependent on $\mathrm{N} \rightarrow$ A always has spatial locality
- How many iterations does it take to return to the same element of A?
- What is $d_{t}(\mathrm{~A})$?

$$
\begin{aligned}
& \text { for } i \in[0: 1: N-1] \\
& \text { for } j \in[0: 1: M-1] \\
& \text { for } k \in[0: 1: K-1] \\
& \qquad \mathrm{C}_{i j}=\mathrm{C}_{i j}+\mathrm{A}_{i k} * \mathrm{~B}_{k j}
\end{aligned}
$$

Miss rates for B and C

- What is $d_{t}(\mathrm{~B})$?

$$
\begin{aligned}
& \text { for } i \in[0: 1: N-1] \\
& \text { for } j \in[0: 1: M-1] \\
& \quad \text { for } k \in[0: 1: K-1] \\
& \qquad \mathrm{C}_{i j}=\mathrm{C}_{i j}+\mathrm{A}_{i k} * \mathrm{~B}_{k j}
\end{aligned}
$$

- What is $d_{s}(\mathrm{~B})$?

- What about for C?

Putting it all together

$\operatorname{miss}_{i j k, A}(N, b, C)=\left\{\begin{array}{l|l}N^{2} / b & b N+N \leq C \\ N^{3} / b & \text { otherwise }\end{array}\right.$
$\operatorname{miss}_{i j k, B}(N, b, C)=\left\{\begin{array}{l|l}N^{2} / b & \left(N^{2}+2 N\right) \leq C \\ N^{3} / b & b N+N \leq C \\ N^{3} & \text { otherwise }\end{array}\right.$
$\operatorname{miss}_{i j k, C}(N, b, C)=N^{2} / b$

Putting it all together

$$
\operatorname{miss}_{i j k}(N, b, C)=\left\{\begin{array}{l|l}
3 N^{2} / b & \left(N^{2}+2 N\right) \leq C \\
N^{3} / b+2 N^{2} / b & b N+N \leq C \\
(b+1) N^{3} / b & \text { otherwise }
\end{array}\right.
$$

$$
\operatorname{ratio}_{i j k}(N, b, C)=\left\{\begin{array}{l|l}
3 /(4 b N) & N \leq \sqrt{(} C) \\
1 /(4 b) & N \leq C /(b+1) \\
(b+1) /(4 b) & \text { otherwise }
\end{array}\right.
$$

Miss ratios for other orders

$$
\begin{aligned}
& \operatorname{ratio}_{i j k}(N, b, C)=\left\{\begin{array}{l|l}
3 /(4 b N) & N \leq \sqrt{(} C) \\
1 /(4 b) & N \leq C /(b+1) \\
(b+1) /(4 b) & \text { otherwise }
\end{array}\right. \\
& \operatorname{ratio}_{j k i}(N, b, C)= \begin{cases}3 /(4 b N) & N \leq \sqrt{(} C) \\
1 /(4 b) & N \leq C /(2 b) \\
1 / 2 & \text { otherwise }\end{cases} \\
& \operatorname{ratio}_{k i j}(N, b, C)= \begin{cases}3 /(4 b N) & N \leq \sqrt{(C)} \\
1 /(4 b) & N \leq C / 2 \\
1 /(2 b) & \text { otherwise }\end{cases}
\end{aligned}
$$

Performance regimes

- Large-cache regime
- All matrices exhibit temporal and spatial locality
- Miss rate decreases as matrix size gets larger
- For all orders, occurs until $N \geq \operatorname{sqrt}(C)$
- Medium-cache regime
- One matrix starts incurring capacity misses
- Others still enjoy locality
- Small-cache regime
- Two matrices start suffering capacity misses

Predicting performance

- Itanium 2 architecture:
- Line size: 16 doubles
- Cache size (L2): 32 K doubles

- Predicted miss rates:
- decrease while $\mathrm{N} \leq 18 \mathrm{I}$
- \quad. 5625% while $\mathrm{N} \leq 1927$
- 26.5625% afterwards

Miss ratios

Miss ratios

Tuesday, February 2, 2010

Loop permutation

- Loop permutation clearly an important transformation
- Can lead to massive performance improvements
- How do we determine when loop permutation is legal?
- How do we automatically generate permuted code?
- Straightforward for some loops (like MMM)
- Much harder for other loops
- How do we know if loop permutation will be useful?
- Don't want to change ikj loop into jki loop!
- Are there other transformations we might want to perform?
- The next set of lectures will answer these questions

