Static Single Assignment (SSA)

Slides Courtesy: Milind Kulkarni (Purdue University)

Use-def chains

- Structure which shows, for each use of a variable, which definitions could reach it
- A use may be reached by multiple definitions
- Example:
- $\mathrm{a}_{5} \rightarrow$
- $\mathrm{b}_{5} \rightarrow$
- $\mathrm{a}_{8} \rightarrow$

$$
\begin{aligned}
& \text { 1: } a=7 ; \\
& \text { 2: } b=2 ; \\
& 3: \text { if }(c) \\
& \text { 4: } \quad b=8 ; \\
& \text { 5: } d=a+b ; \\
& \text { 6: } a=9 ; \\
& \text { 7: while }(\ldots)\{ \\
& 8: \quad d=a+1 ; \\
& 9: \quad a=a+1 ; \\
& 10:\}
\end{aligned}
$$

- Can also build def-use chains

Calculating use-def chains

- Easy!
- Perform a reaching-definitions dataflow analysis
- At each variable use, look for definitions of that variable that reach the statement
- Construct use-def chains

Why use-def chains?

- Capture dependence information
- Use-def chains represent flow of data through program
- Can speed up optimizations
- Consider constant propagation

Sparse constant propagation

- Consider what happens when a variable gets updated during constant propagation using worklist algorithm
- e.g., process $x=2 ; x$ moves from $\perp \rightarrow 2$
- Put all successors of CFG node into worklist
- But what if x isn't used in immediate successor nodes?
- Spend a lot of time propagating data and processing nodes for no reason
- Update of x only matters at last node

Using use-def chains

- Instead of propagating data along CFG edges, what if we just propagate data along use-def edges?
- When x is updated, propagate data directly to last node, bypassing all the intermediate nodes!
- Can we run same CP algorithm?
- Originally initialize with just start node. No uses of definitions \rightarrow Algorithm terminates early
- Need to change initialization:Add all statements with constant RHS to initial worklist
- Upshot: original CP algorithm $\mathrm{O}\left(\mathrm{EV}^{2}\right)$; sparse algorithm $\mathrm{O}\left(\mathrm{N}^{2} \mathrm{~V}\right)$
- N is number of CFG nodes

Problems with u/d chains

- Can be very expensive to represent
- CFG with N nodes can have $\mathrm{N}^{2} \mathrm{u} / \mathrm{d}$ chains
- Each use can have multiple definitions associated with it
- Can make it difficult to keep u/d information accurate as optimizations are performed and code is transformed

- Multiple defs can make optimizations harder (will see this when we return to CP)

Solution: SSA

- Static Single Assignment form
- Compact representation of use/def information
- Key feature: No variable is defined more than once (single assignment)
- Eliminates anti/output dependences \rightarrow more optimizations possible
- SSA enables more efficient versions of optimizations
- Used in many compilers
- e.g., LLVM

SSA for straight line code

- Each assignment to a variable is given a unique name
- All of the uses reached by that assignment are renamed to match
- Easy for straight line code:

$$
\begin{array}{ll}
a & =4 ; \\
\ldots & =a+5 ; \\
a=7 ; & \longrightarrow a \\
\ldots=a+6 ; & \\
a_{1}=4 \\
a_{2}=7 \\
\ldots=a_{1}+5
\end{array}
$$

SSA for control flow

- Easy when only one definition reaches a use
- What do we do for code with branches/loops?
- Multiple definitions reach a single use

φ functions

- Dummy function that represents merging of two values
- Part of IR, but not actually emitted as code
- Inserted at merge points to combine two definitions into one

Loops

- How would you put this loop into SSA form?

Loops

- How would you put this loop into SSA form?

Converting to SSA form

- Two steps to convert a program to SSA form
- φ function placement
- Where do we place the φ functions?
- Variable renaming
- Rename variable definitions and uses to satisfy singleassignment property

φ function placement

- Need to place φ functions wherever two definitions of a variable might merge
- Safe: place a φ function at every join point in CFG
- Clearly too many functions

φ function placement

- Condition:
- If \exists CFG nodes X, Y, Z such that there are paths $X \rightarrow^{+} Z$ and $Y \rightarrow^{+} Z$ which converge at Z, and X and Y contain assignments to some variable v (in the original program), then a φ-node must be inserted in Z (in the new program)
- Options:
- minimal:As few φ-nodes as possible subject to condition
- Briggs-minimal: Do not insert φ-nodes if V is not live across basic blocks
- pruned: Remove "dead" φ-nodes

Minimal placement

- Condition:
- If \exists CFG nodes X, Y, Z such that there are paths $X \rightarrow^{+} Z$ and $Y \rightarrow^{+} Z$ which converge at Z, and X and Y contain assignments to some variable v (in the original program), then a φ-node must be inserted in Z (in the new program)
- Only want to place φ-nodes wherever the placement condition is true
- Will be at join points, but not all points
- Want to trace paths from definitions and find earliest place those paths merge.

Example

Finding minimal placement

- Could trace every path from assignments to find convergence points
- This is expensive!
- Intuition: what if, for each assignment, we can find the set of nodes which could result in a convergence of definitions?
- Then only need to place φ-nodes there!

Detour: dominance

- Recall some terms from CFG analysis
- A node X dominates a node Y if X appears on all paths from entry to Y
- $\quad \mathrm{X} \in \operatorname{DOM}(\mathrm{Y})$
- A node X strictly dominates Y if X DOM Y and $X \neq Y$
- $\quad X \in D O M!(Y)$
- A node X is the immediate dominator of Y if X is the closest dominator of Y
- $\quad \mathrm{X}=\operatorname{IDOM}(\mathrm{Y})$
- Note: $X=\operatorname{IDOM}(Y) \Rightarrow \forall X^{\prime} \in \operatorname{DOM}(Y)$, $X^{\prime} \in \operatorname{DOM}(X)$

Dominance trees

- Dominance tree induced by IDOM
- If $X=\operatorname{IDOM}(Y), X$ is Y 's parent in dominance tree

Dominance trees

- Dominance tree induced by IDOM
- If $X=\operatorname{IDOM}(Y), X$ is Y 's parent in dominance tree

Dominance frontier

- The dominance frontier of a node X is the set of nodes $\operatorname{DF}(X)$ such that for all $Y \in$ DF(X), X dominates a predecessor of Y , but does not strictly dominate Y
- What are the dominance frontiers for the nodes in this CFG?

Finding dominance frontiers

- Start by building dominance tree (see algorithm in Cooper et al.), then run algorithm:

```
forall v
    if (number of predecessors of v}\geq2\mathrm{ ) then
        forall predecessors p of v
            runner = p
            while (runner = IDOM(v))
            add v to DF(runner)
            runner = IDOM(runner)
```

- Intuition:
- $\quad v$ can only be in a DF if it has 2 or more preds
- Predecessors must have v in DF, unless they dominate v (by definition).
- Dominators of predecessors must have v in DF, unless they dominate v

Example

Iterated dominance frontier

$$
\begin{array}{r}
D F(\mathcal{L})=\bigcup_{X \in \mathcal{L}} D F(X) \\
D F^{+}(\mathcal{L})=\text { limit of sequence } \\
D F_{1}=D F(\mathcal{L}) \\
D F_{i+1}=D F\left(\mathcal{L} \cup D F_{i}\right)
\end{array}
$$

Theorem:
The set of nodes that need φ-nodes for a variable v is the iterated dominance frontier $\mathrm{DF}^{+}(\mathrm{L})$ where L is the set of nodes with assignments to v

Inserting φ-nodes

```
foreach variable v
    HasAlready = { }
    EverOnWorklist = { }
    Worklist = { }
    foreach node }X\mathrm{ containing assignment to }
    EverOnWorklist = EverOnWorklist }\cup{X
    Worklist = Worklist }\cup{X
    while Worklist not empty
        remove X from Worklist
        foreach Y \in DF(X)
        if Y}\not\in\mathrm{ HasAlready
            insert }\varphi\mathrm{ -node for v at {Y}
            HasAlready = HasAlready }\cup{Y
            if Y & EverOnWorklist
                Worklist = Worklist \cup{Y}
                    EverOnWorklist = EverOnWorklist \cup {Y}
```


Converting to SSA form

- Two steps to convert a program to SSA form
- φ function placement
- Where do we place the φ functions?
- Variable renaming
- Rename variable definitions and uses to satisfy singleassignment property

Variable renaming

- At this point, φ-nodes are of the form $v=\varphi(v, v)$
- Need to rename each variable to satisfy SSA criteria
- High level idea:
- At every φ-node, rename "target" of φ, then replace all names in the block with new name
- Change names in successor blocks to match new name, unless successor block has a φ-node
- In which case, generate new name for target, and continue

Algorithms

Stacks: an array of stacks, one for each variable Counters: an array of counters, one for each variable

Procedure Rename(Block X)
if X visited, return
foreach φ-node P in X
GenName(LHS(P))
foreach statement A in X
foreach Variable $v \in \operatorname{RHS}(A)$
replace v with v_{i} where $\mathrm{i}=\operatorname{Top}(\operatorname{Stacks}[v])$
foreach Variable $v \in \operatorname{LHS}(A)$ GenName(v)
foreach $Y \in$ successors (X)
foreach φ-node P in Y
replace operands of P according to vars in X
foreach $Y \in$ successors (X) Rename(Y)
foreach φ-node or statement A in X
foreach $v_{i} \in \operatorname{LHS}(A)$
Pop(Stacks[v])

Procedure GenName(Variable v)
$\mathrm{i}=$ Counters $[v]++$
replace v with v_{i}
Push i onto Stacks[v]

Start by calling Rename(Entry)

Pruning φ-nodes

- Can eliminate φ-nodes that occur because of variables that are not live across basic blocks
- These "block local" variables won't be used later, so do not need to be merged
- Can eliminate φ-nodes that are dead
- Merged variable isn't used again

Translating out of SSA form

- Cannot just remove φ-nodes and restore variables to original names
- Can mess up optimizations that assume variables use separate storage

```
while (...) do
    read \(v\)
    \(w=v+w\)
    \(v=6\)
    \(w=v+w\)
end
```

$$
\begin{aligned}
& v_{2}=6 \\
& \text { while }(\ldots) \text { do } \\
& w_{3}=\varphi\left(w_{0}, w_{2}\right) \\
& v_{3}=\varphi\left(v_{0}, v_{2}\right) \\
& \text { read } v_{1} \\
& w_{1}=v_{1}+w_{3} \\
& w_{2}=v_{2}+w_{1}
\end{aligned}
$$

Translating out of SSA form

- Eliminate φ-nodes
- Replace with copies in predecessor nodes
- But doesn't this add a lot of extra copies?
- Solution:

- Graph coloring with copy/ move coalescing!
- Allows most renamed variables to revert to original name by coalescing with each other
- If not legal, graph coloring will prevent coalescing

Returning to CP

Problems with u/d CP

- What happens if we know which way a branch will resolve?
- Do not need to propagate information from that branch
- Easy to do with CFGs
- What does this mean when we're using u/d chains?
- Can be very hard to tell which definitions to ignore!

Use/def CP with SSA

- SSA form shortens u/d chains
- Chains terminate at merge points, rather than crossing them
- Can simply ignore information merged from un-taken branches
- Much easier to account for irrelevant information
- Complexity: O(EV)

